The volume of a rectangular pyramid is 120 cm3. If the height of the base is 5 cm and the height of the pyramid is 12 cm, what is the length of the base of the pyramid?

Respuesta :

Answer:

1. Volume of a cone: 1. V = (1/3)πr2h 2. Slant height of a cone: 1. s = √(r2 + h2) 3. Lateral surface area of a cone: 1. L = πrs = πr√(r2 + h2) 4. Base surface area of a cone (a circle): 1. B = πr2 5. Total surface area of a cone: 1. A = L + B = πrs + πr2 = πr(s + r) = πr(r + √(r2 + h2))

Step-by-step explanation:

1. Volume of a cone: 1. V = (1/3)πr2h 2. Slant height of a cone: 1. s = √(r2 + h2) 3. Lateral surface area of a cone: 1. L = πrs = πr√(r2 + h2) 4. Base surface area of a cone (a circle): 1. B = πr2 5. Total surface area of a cone: 1. A = L + B = πrs + πr2 = πr(s + r) = πr(r + √(r2 + h2))