Respuesta :

Answer:

[tex] \frac{3}{ {x}^{6} } [/tex]

Step-by-step explanation:

[tex] \frac{6 {x}^{3} }{2x {}^{9} } [/tex]

Using the division property of power,

[tex] \frac{ {x}^{n} }{ {x}^{m} } = x {}^{n - m} [/tex]

6 and 2 are the real numbers so just divide 2 by 6.

[tex] \frac{6 {x}^{3} }{2 {x}^{9} } = \frac{6}{2} {x}^{3 - 9} [/tex]

[tex]3x {}^{ - 6} [/tex]

Using the negative properties of power

[tex]x {}^{ - n} = \frac{1}{x {}^{n} } [/tex]

Make sure the coefficient in front x, is the numerator.

Since 3 is our coefficient, it will be 3.

[tex] \frac{3}{ {x}^{6} } [/tex]