Answer:
[tex] \frac{3}{ {x}^{6} } [/tex]
Step-by-step explanation:
[tex] \frac{6 {x}^{3} }{2x {}^{9} } [/tex]
Using the division property of power,
[tex] \frac{ {x}^{n} }{ {x}^{m} } = x {}^{n - m} [/tex]
6 and 2 are the real numbers so just divide 2 by 6.
[tex] \frac{6 {x}^{3} }{2 {x}^{9} } = \frac{6}{2} {x}^{3 - 9} [/tex]
[tex]3x {}^{ - 6} [/tex]
Using the negative properties of power
[tex]x {}^{ - n} = \frac{1}{x {}^{n} } [/tex]
Make sure the coefficient in front x, is the numerator.
Since 3 is our coefficient, it will be 3.
[tex] \frac{3}{ {x}^{6} } [/tex]