Given:
Hayden [tex]1\dfrac{1}{2}[/tex] minutes to complete each level of his video game.
He plays for [tex]10\dfrac{1}{4}[/tex] minutes.
To find:
The number of levels he will complete.
Solution:
We have,
Required time for each level = [tex]1\dfrac{1}{2}[/tex]
Total time = [tex]10\dfrac{1}{4}[/tex]
The number of level is
[tex]n=\dfrac{\text{Total time}}{\text{Required time for each level}}[/tex]
[tex]n=\dfrac{10\dfrac{1}{4}}{1\dfrac{1}{2}}[/tex]
[tex]n=\dfrac{\dfrac{10(4)+1}{4}}{\dfrac{1(2)+1}{2}}[/tex]
[tex]n=\dfrac{\dfrac{41}{4}}{\dfrac{3}{2}}[/tex]
On further simplification, we get
[tex]n=\dfrac{41}{4}\times \dfrac{2}{3}[/tex]
[tex]n=\dfrac{41}{6}[/tex]
[tex]n=6.8333...[/tex]
Number of levels must be a whole number. So, approx to value to the preceding whole number.
[tex]n\approx 6[/tex]
Therefore, Hayden will complete 6 levels if he plays for [tex]10\dfrac{1}{4}[/tex] minutes.