Questions:
a. The jet ski is for two persons and has turbo packs.
b. The jet ski is not for two persons but has turbo packs.
Answer:
[tex]P(P\ and\ T) = \frac{10}{29}[/tex]
[tex]P(P\ and\ T') = \frac{270}{841}[/tex]
Step-by-step explanation:
Given
[tex]n=29[/tex] --- Total
[tex]T = 14[/tex] --- Two person skis
[tex]P = 18[/tex] --- Turbo packs skis
[tex]P\ and\ T = 10[/tex] --- Two person ski and Turbo packs
Solving (a):
This is represented as: [tex]P(P\ and\ T)[/tex]
This is calculated as:
[tex]P(P\ and\ T) = \frac{n(P\ and\ T)}{n}[/tex]
[tex]P(P\ and\ T) = \frac{10}{29}[/tex]
Solving (a):
This is represented as: [tex]P(P\ and\ T')[/tex]
This is calculated as:
[tex]P(P\ and\ T') = P(P)\ and\ P(T')[/tex]
[tex]P(P\ and\ T') = P(P)\ *\ P(T')[/tex]
Using the complement rule, we have:
[tex]P(T') = 1 - P(T)[/tex]
The equation becomes:
[tex]P(P\ and\ T') = P(P)\ *\ [1 - P(T)][/tex]
[tex]P(P\ and\ T') = \frac{n(P)}{n}\ *\ [1 - \frac{n(T)}{n}][/tex]
[tex]P(P\ and\ T') = \frac{18}{29}\ *\ [1 - \frac{14}{29}][/tex]
[tex]P(P\ and\ T') = \frac{18}{29}\ *\ \frac{29-14}{29}[/tex]
[tex]P(P\ and\ T') = \frac{18}{29}\ *\ \frac{15}{29}[/tex]
[tex]P(P\ and\ T') = \frac{18*15}{29*29}[/tex]
[tex]P(P\ and\ T') = \frac{270}{841}[/tex]