Find a homogeneous linear differential equation with constant coefficients whose general solution is given by
y=c1e−xcosx+c2e−xsinx.

Respuesta :

Answer:

[tex]y" + 2y' + 2y = 0[/tex]

Step-by-step explanation:

Given

[tex]y=c_1e^{-x}cosx+c_2e^{-x}sinx[/tex]

Required

Determine a homogeneous linear differential equation

Rewrite the expression as:

[tex]y=c_1e^{\alpha x}cos(\beta x)+c_2e^{\alpha x}sin(\beta x)[/tex]

Where

[tex]\alpha = -1[/tex] and [tex]\beta = 1[/tex]

For a homogeneous linear differential equation, the repeated value m is given as:

[tex]m = \alpha \± \beta i[/tex]

Substitute values for [tex]\alpha[/tex] and [tex]\beta[/tex]

[tex]m = -1 \± 1*i[/tex]

[tex]m = -1 \± i[/tex]

Add 1 to both sides

[tex]m +1= 1 -1 \± i[/tex]

[tex]m +1= \± i[/tex]

Square both sides

[tex](m +1)^2= (\± i)^2[/tex]

[tex]m^2 + m + m + 1 = i^2[/tex]

[tex]m^2 + 2m + 1 = i^2[/tex]

In complex numbers:

[tex]i^2 = -1[/tex]

So, the expression becomes:

[tex]m^2 + 2m + 1 = -1[/tex]

Add 1 to both sides

[tex]m^2 + 2m + 1 +1= -1+1[/tex]

[tex]m^2 + 2m + 2= 0[/tex]

This corresponds to the homogeneous linear differential equation

[tex]y" + 2y' + 2y = 0[/tex]