contestada

A physics class performs an experiment to determine the winner of a race. An empty can, a solid cylindrical battery and a marble roll, all with the same radius) without slipping down an inclined plane of vertical height H (they are all released at the same height). A box slides without friction on another inclined plane of the same height, H. Which object reaches the bottom of the incline first

Respuesta :

Answer:

a) SPHERE must be the winner

b) BOX is most fastest

Explanation:

For this exercise we must use conservation of energy

starting point. Highest part of the plane

         Em₀ = U = m g h

final point. Lowest part of the plane

          Em_f = K = ½ m v² + ½ I w²

Note that as the objects roll, the kinetic energy of rotation is included. Energy is conserved

           Em₀ = Em_f

           mg h = ½ m v² + ½ I w²

the linear and rotational variables are related

          v = w r

          w = v / r

the moment of inertia of the bodies is tabulated

ring (empty can)      I = m r²

cylinder                    I =  ½ m r²

sphere (marbles)    I = 2/5 m r²

         mgh = ½ m v² + ½ I v²/r² = ½ mv² (+ I / mr²)

         2gh / (1 + I / mr²) = v²             (1)

Let's analyze the value of I / mr2

can            I / mr² = mr² / mr² = 1

cylinder    I / mr² = ½ mr² / mr² = ½

sphere      I / mr² = 2/5 mr² / mr² = 2/5

we substitute in equation 1

               v = [tex]\sqrt{ \frac{2gh}{ (1+ \frac{I}{m r^2}) } }[/tex]

can         v = √(2gh / 2) = √ gh

               v = √gh

cylinder   v= [tex]\sqrt{ \frac{2gh}{ \frac{3}{2} } }[/tex]  = √(4gh/3)

                v = 1,155 √gh

sphere     v = [tex]\sqrt{ \frac{2gh}{ \frac{7}{5} } }[/tex] = √(10gh/7)

                v = 1.20 √gh

therefore the object with the highest speed is the one that takes less time, consequently the SPHERE must be the cattle.

b) for a box on a frictionless surface, there is no rotational kinetic energy

               mgh = ½ m v²

               v = √2gh

               v = 1.41 √(gh)

When comparing with the latter, this would be the one that arrives first