Answer: The temperature of the gas at a pressure of 0.987 atm and volume of 144mL is [tex]25.16^0C[/tex]
Explanation:
The combined gas equation is,
[tex]\frac{P_1V_1}{T_1}=\frac{P_2V_2}{T_2}[/tex]
where,
[tex]P_1[/tex] = initial pressure of gas = 0.947 atm
[tex]P_2[/tex] = final pressure of gas = 0.987 atm
[tex]V_1[/tex] = initial volume of gas = 150 ml
[tex]V_2[/tex] = final volume of gas = 144 ml
[tex]T_1[/tex] = initial temperature of gas = [tex]25^0C=(25+273.15)K=298.15K[/tex]
[tex]T_2[/tex] = final temperature of gas = ?
Now put all the given values in the above equation, we get:
[tex]\frac{0.947\times 150}{298.15}=\frac{0.987\times 144}{T_2}[/tex]
[tex]T_2=298.31K=(298.31-273.15)^0C=25.16^0C[/tex]
The temperature of the gas at a pressure of 0.987 atm and volume of 144mL is [tex]25.16^0C[/tex]