Respuesta :

Answer:

Step-by-step explanation:

Sin(30) / X  = Sin(45) / 12

use algebra to isolate X

1 / X = [ Sin(45) / 12  ]   /  Sin(30)

flip both sides

X =  Sin(30) / [Sin(45) /12 ]

invert the denominator on the right side

X = Sin(30) *  12/ Sin(45)

Do you know what Sin(30) is off the top of your head?

and also Sin(45) ?

these are worth remembering... and you can b/c they are just

sin(0) = 0/2

sin(30) = 1 / 2

sin(45) = [tex]\sqrt{2}[/tex]/2

sin(60)= [tex]\sqrt{3}[/tex] / 2

sin(90) = [tex]\sqrt{4}[/tex] / 2    (aka 1)

note the numerators just counts up  0, 1, 2, 3, 4  :)  

Cos works the same way but counts from 90° back to 0 but exactly like sin other wise, hence why Cos and Sin both = [tex]\sqrt{2}[/tex]/2 at 45 °

anyway

X =  1 / 2 * 12/ [tex]\sqrt{2}[/tex]/2

X = 3[tex]\sqrt{2}[/tex]

A=3

B= 2

:)  nice , huh