Respuesta :

 The first term in the binomial is "x2", the second term in "3", and the power n is 6, so, counting from0 to 6, the Binomial Theorem gives me:(x2 + 3)6  =  6C0 (x2)6(3)0 + 6C1(x2)5(3)1 + 6C2 (x2)4(3)2 + 6C3 (x2)3(3)3+ 6C4 (x2)2(3)4 + 6C5 (x2)1(3)5 + 6C6 (x2)0(3)6Then simplifying gives me(1)(x12)(1) + (6)(x10)(3) + (15)(x8)(9) + (20)(x6)(27)+ (15)(x4)(81) + (6)(x2)(243) + (1)(1)(729)x12 + 18x10 + 135x8 + 540x6 + 1215x4 + 1458x2 + 729

Answer:

The third term in the expansion of the given expression us:

                            [tex]24x^2y^2[/tex]

Step-by-step explanation:

We are given an expression as:

                  [tex](2x+y)^4[/tex]

We know that by using the binomial theorem the expansion of the expression of the type:

           [tex](ax+by)^n[/tex]

is given by:

[tex](ax+by)^n=n_C_0 (ax)^0(by)^{n-0}+n_C_1 (ax)^1(by)^{n-1}+...........+n_C_n (ax)^n(by)^{n-n}[/tex]

This means that there are n+1 terms in the expansion of the type:   [tex](ax+by)^n[/tex]

such that the rth term is:

[tex]n_C_{r-1}\times (ax)^{r-1}\times (by)^{n-(r-1)}[/tex]

Here we have:

   n=4,a=2 and b=1

Now, the third term in the expansion of the given expression is:

[tex]4_C_2(2x)^2(y)^{4-2}[/tex]

[tex]=\dfrac{4!}{2!\times 2!}\times 4x^2\times y^2\\\\\\=24x^2y^2[/tex]