Brandon is on one side of a river that is 50 m wide and wants to reach a point 200 m downstream on the opposite side as quickly as possible by swimming diagonally across the river and then running the rest of the way. Find the minimum amount of time if Brandon can swim at 1.5 m/s and run at 4 m/s. (Round your answer to two decimal places.)

Respuesta :

(Refer to picture for diagram.)

[tex]c=\sqrt{x^{2}+50^{2}}=\sqrt{x^{2}+2500}[/tex]

[tex]Time=\frac{Distance}{Speed}[/tex]
Time across river [tex]=\frac{\sqrt{x^{2}+2500}}{1.5}[/tex]
Time along coast [tex]=\frac{200-x}{4}[/tex]

So time [tex]T(x)=\frac{\sqrt{x^{2}+2500}}{1.5}+\frac{200-x}{4}[/tex]
Differentiate: [tex]T'(x)=\frac{1}{1.5}*\frac{1}{2\sqrt{x^{2}+2500}}*2x+\frac{-1}{4}[/tex]
⇒[tex]T'(x)=\frac{x}{1.5\sqrt{x^{2}+2500}}-\frac{1}{4}[/tex]
For minimum, set [tex]T'(x)=0[/tex]
⇒[tex]\frac{x}{1.5\sqrt{x^{2}+2500}}-\frac{1}{4}=0[/tex]
⇒[tex]\frac{x}{1.5\sqrt{x^{2}+2500}}=\frac{1}{4}[/tex]
⇒[tex]4x=1.5\sqrt{x^{2}+2500}[/tex]
⇒[tex]16x^{2}=2.25(x^{2}+2500)[/tex]
⇒[tex]16x^{2}=2.25x^{2}+5625[/tex]
⇒[tex]13.75x^{2}=5625[/tex]
⇒[tex]x^{2}=\frac{5625}{13.75}[/tex]
⇒[tex]x=\sqrt{\frac{5625}{13.75}}[/tex]

To avoid rounding errors, just plug the expression into the formula:
[tex]T=\frac{\sqrt{(\sqrt{\frac{5625}{13.75}})^{2}+2500}}{1.5}+\frac{200-\sqrt{\frac{5625}{13.75}}}{4}[/tex]
T≈80.90 seconds
Ver imagen bartdrinksmalk