Respuesta :

Answer:

b = 125

Step-by-step explanation:

Given a varies directly as [tex]\sqrt[3]{b}[/tex] then the equation relating them is

a = k[tex]\sqrt[3]{b}[/tex] ← k is the constant of variation

To find k use the condition a = 3 , b = 64 , then

3 = k[tex]\sqrt[3]{64}[/tex] = 4k ( divide both sides by 4 )

[tex]\frac{3}{4}[/tex] = k

a = [tex]\frac{3}{4}[/tex] [tex]\sqrt[3]{b}[/tex] ← equation of variation

When a = [tex]\frac{15}{4}[/tex] , then

[tex]\frac{15}{4}[/tex] = [tex]\frac{3}{4}[/tex] [tex]\sqrt[3]{b}[/tex] ( multiply both sides by 4 to clear the fractions )

15 = 3[tex]\sqrt[3]{b}[/tex] ( divide both sides by 3 )

5 = [tex]\sqrt[3]{b}[/tex] , then

b = 5³ = 125