Respuesta :
Answer:
x= −5−11√13/2, −5+11√13/2
Solve the equation for x by finding a, b, and c of the quadratic then applying the quadratic formula.
Exact Form:
x= −5−11√13/2, −5+11√13/2
Decimal Form:
x=17.33053201…,
−22.33053201…
Step-by-step explanation:
x(x+5)=387
Simplify
x(x+5).
x^2+5x=387
Subtract 387 from both sides of the equation.
x^2+5x−387=0
Use the quadratic formula to find the solutions.
−b±√b^2−4(ac)/2a
Substitute the values a=1, b=5, and c= −387 into the quadratic formula and solve for x.−5±√5^2−4⋅(1⋅−387)/2⋅1
Simplify.
x=−5±11√13/2
The final answer is the combination of both solutions.
x=−5−11√13/2, −5+11√13/2
The result can be shown in multiple forms.
Exact Form:
x=−5−11√13/2,−5+11√13/2
Decimal Form:
x=17.33053201…,
−22.33053201…
Hope it is helpful....
Answer:
[tex]\displaystyle x=\frac{-5+11\sqrt{13}}{2}[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
- Left to Right
Distributive Property
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality
Algebra I
- Standard Form: ax² + bx + c = 0
- Quadratic Formula: [tex]\displaystyle x=\frac{-b\pm\sqrt{b^2-4ac} }{2a}[/tex]
Step-by-step explanation:
Step 1: Define
x(x + 5) = 387
Step 2: Identify Variables
Rewrite
- [Distributive Property] Distribute x: x² + 5x = 387
- [Subtraction Property of Equality] Subtract 387 on both sides: x² + 5x - 387 = 0
- Part: a = 1, b = 5, c = -387
Step 3: Solve for x
- Substitute in variables [Quadratic Formula]: [tex]\displaystyle x=\frac{-5\pm\sqrt{5^2-4(1)(-387)}}{2(1)}[/tex]
- [√Radical] Evaluate exponents: [tex]\displaystyle x=\frac{-5\pm\sqrt{25-4(1)(-387)}}{2(1)}[/tex]
- [√Radical] Multiply: [tex]\displaystyle x=\frac{-5\pm\sqrt{25+1548}}{2(1)}[/tex]
- [√Radical] Add: [tex]\displaystyle x=\frac{-5\pm\sqrt{1573}}{2(1)}[/tex]
- [Fraction - Denominator] Multiply: [tex]\displaystyle x=\frac{-5\pm\sqrt{1573}}{2}[/tex]
- [Fraction - √Radical] Simplify: [tex]\displaystyle x=\frac{-5\pm 11\sqrt{13}}{2}[/tex]