Answer:
x = 4, y = 6
Step-by-step explanation:
Consider the triangle BEC.
∠BEC=112 (vertically opposite angles)
∠EBC=∠ECB (BEC is an isosceles triangle)
All the angles in a triangle add up to 180, so:
∠BEC+∠EBC+∠ECB=180
112+(7x+6)+(7x+6)=180
14x=180-112-6-6
x=56/14=4
Consider the triangle CED
∠CED=68 (lies on a straight line with 112, angles on a straight line add up to 180)
∠EDC=∠ECD (CED is an isosceles triangle)
All the angles in a triangle add up to 180, so:
∠CED+∠EDC+∠ECD=180
68+(9y+2)+(9y+2)=180
18y=180-68-2-2
y=108/y=6