N the numerical sentence below, A = 8, D =1/2 , and F =1/4 . What are the values B, C, and E if the sentence below is equivalent to the numerical sentence, 2 × 4 = 8?

Respuesta :

Answer:

[tex]B = \frac{1}{3}[/tex]

[tex]C = 16[/tex]

[tex]E = 4096[/tex]

Step-by-step explanation:

Given

[tex]A^B * C^D = E^F[/tex] --- Missing from the question

[tex]2*4 = 8[/tex]

[tex]A = 8[/tex]

[tex]D = \frac{1}{2}[/tex]

[tex]F = \frac{1}{4}[/tex]

Required: Find B, C and E

Substitute values for A, D and F in [tex]A^B * C^D = E^F[/tex]

[tex]8^B * C^{\frac{1}{2}} = E^{\frac{1}{4}}[/tex]

Compare the above expression to: [tex]2*4 = 8[/tex]

We have:

[tex]8^B = 2[/tex]

[tex]C^{\frac{1}{2}} = 4[/tex]

[tex]E^{\frac{1}{4}} = 8[/tex]

In [tex]8^B = 2[/tex]

Express 8 as a 2^3

[tex]2^{3B }= 2^1[/tex]

Cancel out 2

[tex]3B = 1[/tex]

[tex]B = \frac{1}{3}[/tex]

In [tex]C^{\frac{1}{2}} = 4[/tex]

Express 4 as [tex]16^{\frac{1}{2}}[/tex]

[tex]C^{\frac{1}{2}} = 16^{\frac{1}{2}}[/tex]

The exponents cancel out

[tex]C = 16[/tex]

In [tex]E^{\frac{1}{4}} = 8[/tex]

Express 8 as [tex]4096^{\frac{1}{4}}[/tex]

[tex]E^{\frac{1}{4}} = 4096^{\frac{1}{4}}[/tex]

The exponents cancel out

[tex]E = 4096[/tex]