Respuesta :
Answer:
[tex]r = 5[/tex] --- Radius
[tex]h = 3.9[/tex] --- Height
Step-by-step explanation:
Given
Shape: Cone
[tex]Volume = 97in^3[/tex]
Required
Determine different possible values of radius and height
The volume (V) of a cone is calculated as:
[tex]V = \frac{1}{3}\pi r^2h[/tex]
Substitute 97 for V
[tex]97 = \frac{1}{3}\pi r^2h[/tex]
Multiply both sides by 3
[tex]3 * 97 = \frac{1}{3}\pi r^2h*3[/tex]
[tex]291 = \pi r^2h[/tex]
Take [tex]\pi[/tex] as 3.14
[tex]291 = 3.14* r^2h[/tex]
Divide both sides by 3.14
[tex]\frac{291}{3.14} = \frac{3.14* r^2h}{3.14}[/tex]
[tex]\frac{291}{3.14} = r^2h[/tex]
[tex]92.68 = r^2h[/tex]
From the question, we understand that:
[tex]r \ne h[/tex]
So, we have to assume a value for either r or h and then solve for the other variable.
Let [tex]r = 5[/tex]
So, We have:
[tex]96.28 = 5^2 * h[/tex]
[tex]96.28 = 25 * h[/tex]
Make h the subject
[tex]h = \frac{96.28}{25}[/tex]
[tex]h = 3.8512[/tex]
[tex]h = 3.9[/tex] --- approximated
Note that there are other different possible values of h that is true for
[tex]92.68 = r^2h[/tex] where [tex]r \ne h[/tex]