Answer:
Step-by-step explanation:
From the given information;
The null hypothesis & alternative hypothesis:
[tex]\mathbf{H_o:\mu = 2} \\ \\ \mathbf{H_1 : \mu \ne 2}[/tex]
The test statistics can be computed as:
[tex]Z = \dfrac{\overline x - \mu}{\dfrac{\sigma}{\sqrt{n}}}[/tex]
[tex]Z = \dfrac{2.025- 2}{\dfrac{0.07}{\sqrt{35}}}[/tex]
[tex]Z = \dfrac{0.025}{\dfrac{0.07}{\sqrt{35}}}[/tex]
[tex]Z =2.11[/tex]
The p-value = 2(Z > 2.11) since this is a two-tailed test
The p-value = 2( 1 - Z < 2.11)
The p-value = 2 (1 -0.9826)
The p-value = 2 (0.0174)
The p-value = 0.0348
Decision Rule: To reject the [tex]\mathbf{H_o}[/tex] if the p-value is less than [tex]\mathbf{H_o}[/tex]
Conclusion: We fail to reject [tex]\mathbf{H_o}[/tex] and conclude that the population mean = 2, thus the machine is properly adjusted.