A very long, solid cylinder with radius R has positive charge uniformly distributed throughout it, with charge per unit volume r. (a) Derive the expression for the electric field inside the volume at a distance r from the axis of the cylinder in terms of the charge density r. (b) What is the electric field at a point outside the volume in terms of the charge per unit length l in the cylinder

Respuesta :

Answer:

Explanation:

From the given information.

The charge density of the cylinder can be computed as:

[tex]\rho = \dfrac{Q_t}{V_t}[/tex]

where:

[tex]Q_t[/tex] = total charge on cylinder

[tex]\rho[/tex] = density of the cylinder

[tex]V_t =[/tex] net volume on cylinder

Considering the charge enclosed by the Gaussian surface; we have:

Q = ρV

Now, determining the volume of the cylinder at a distance r from the axis of the cylinder as follows:

[tex]\int Edsn = \dfrac{q}{\varepsilon_o}[/tex]

Here;

[tex]\hat E \ \ and \ \ \hat n[/tex] are in the same direction;

If we replace [tex]\int Edsn[/tex] with [tex]E ( 2 \pi rl)[/tex] and q with [tex]\rho \pi r^2 l[/tex]; Then:

[tex]E ( 2 \pi rl ) = \dfrac{\rho \pi r^2 l}{\varepsilon _o}[/tex]

By rearrangement;

[tex]E = \dfrac{\rho \pi r^2 l}{ ( 2 \pi rl ) \varepsilon _o}[/tex]

[tex]\mathbf{E = \dfrac{\rho r}{ 2 \varepsilon _o}}[/tex]

(b)

Using the same formula:

[tex]\int Edsn = \dfrac{q}{\varepsilon_o}[/tex]

where;

[tex]\hat E \ \ and \ \ \hat n[/tex] are in the same direction;

If we replace [tex]\int Edsn[/tex] with [tex]E ( 2 \pi rl)[/tex] and [tex]Q_t[/tex] with q;

Then:

[tex]E ( 2 \pi rl ) = \dfrac{Q_t}{\varepsilon _o}[/tex]

[tex]E = \dfrac{Q_t}{( 2 \pi R l ) \varepsilon _o}[/tex]

Replacing [tex]\lambda[/tex] for [tex]\dfrac{Q_t}{l}[/tex].

From above [tex]\lambda[/tex] = the charge per unit length

[tex]\mathbf{E = \dfrac{\lambda}{ 2 \pi R \varepsilon _o}}[/tex]