Answer:
Therefore, the revolutions that each tire makes is:
[tex]\Delta \theta=22\: rev[/tex]
Explanation:
We can use the following equation:
[tex]\omega_{f}^{2}=\omega_{i}^{2}-2\alpha \Delta \theta[/tex] (1)
The angular acceleration is:
[tex]a_{tan}=\alpha R[/tex]
[tex]\alpha=\frac{1.9}{0.325}[/tex]
[tex]\alpha=5.85\: rad/s^{2}[/tex]
and the initial angular velocity is:
[tex]\omega_{i}=\frac{v}{R}[/tex]
[tex]\omega_{i}=\frac{27.2}{0.325}[/tex]
[tex]\omega_{i}=83.69\: rad/s[/tex]
Now, using equation (1) we can find the revolutions of the tire.
[tex]0=83.69^{2}-2*25.85 \Delta \theta[/tex]
[tex]\Delta \theta=135.47\: rad[/tex]
Therefore, the revolutions that each tire makes is:
[tex]\Delta \theta=22\: rev[/tex]
I hope it helps you!