Respuesta :
Answer:
[tex]P(X <1.96) = 0.975[/tex]
[tex]P(X >1.64) = 0.0505[/tex]
[tex]P(0.5 < X < 0.5) = 0[/tex]
Step-by-step explanation:
Given
[tex]\bar x = 0[/tex] --- Mean
[tex]\sigma^2 = 1[/tex] --- Variance
Calculate the standard deviation
[tex]\sigma^2 = 1[/tex]
[tex]\sigma = 1[/tex]
Solving (a): P(X < 1.96)
First, we calculate the z score using:
[tex]z = \frac{X - \bar x}{\sigma}[/tex]
This gives:
[tex]z = \frac{1.96 - 0}{1}[/tex]
[tex]z = \frac{1.96}{1}[/tex]
[tex]z = 1.96[/tex]
The probability is then solved using:
[tex](X < 1.96) = P(z <1.96)[/tex]
From the standard normal distribution table
[tex]P(z <1.96) = 0.97500[/tex]
So:
[tex]P(X <1.96) = 0.975[/tex]
Solving (b): P(X > 1.64)
First, we calculate the z score using:
[tex]z = \frac{X - \bar x}{\sigma}[/tex]
This gives:
[tex]z = \frac{1.64 - 0}{1}[/tex]
[tex]z = \frac{1.64}{1}[/tex]
[tex]z = 1.64[/tex]
The probability is then solved using:
[tex](X > 1.64) = P(z >1.64)[/tex]
[tex]P(z >1.64) = 1 - P(z<1.64)[/tex]
From the standard normal distribution table
[tex]P(z >1.64) = 1 - 0.9495[/tex]
[tex]P(z >1.64) = 0.0505[/tex]
So:
[tex]P(X >1.64) = 0.0505[/tex]
Solving (c): P(0.5 < X < 0.5)
This can be split as:
[tex]P(0.5 < X < 0.5) = P(0.5<X) - P(X<0.5)[/tex]
In probability:
[tex]P(0.5<X) = 1 - P(X>0.5)[/tex]
[tex]P(0.5<X) = 1 - [1 - P(X<0.5)][/tex]
[tex]P(0.5<X) = 1 - 1 + P(X<0.5)[/tex]
[tex]P(0.5<X) = P(X<0.5)[/tex]
[tex]P(0.5 < X < 0.5) = P(0.5<X) - P(X<0.5)[/tex] becomes
[tex]P(0.5 < X < 0.5) = P(X<0.5) - P(X<0.5)[/tex]
[tex]P(0.5 < X < 0.5) = 0[/tex]