Answer:
36.3m/s
Explanation:
We are given that
Mass of block, m=13 kg
Mass of glob,m'=400g=0.4 kg
1 kg=1000g
Total mass, M=13+0.4=13.4 kg
Distance, s=15 cm=0.15m
1m=100cm
Coefficient of sliding friction, [tex]\mu=0.4[/tex]
We have to find the initial speed of the putty.
Friction force, f=[tex]\mu Mg=0.4\times 13.4\times 9.8[/tex]N
Where [tex]g=9.8m/s^2[/tex]
Work done=[tex]Fs[/tex]
Work done=[tex]0.4\times 13.4\times 9.8\times 0.15[/tex]
Work done=7.8792 J
Work done =K.E=[tex]1/2 MV^2[/tex]
[tex]7.8792=\frac{1}{2}(13.4)V^2[/tex]
[tex]V^2=7.8792\times 2/13.4=1.176[/tex]
[tex]V=1.0844m/s[/tex]
Using conservation of linear momentum
[tex]mu+ m'v=MV[/tex]
[tex]13(0)+0.4v=13.4(1.0844)[/tex]
[tex]0.4v=14.53[/tex]
[tex]v=\frac{14.53}{0.4}[/tex]
[tex]v=36.3m/s[/tex]
Hence, the initial speed of the putty=36.3m/s