In a hydraulic press, a force of 200 N is applied to master piston of area of 25cm-2. If the press is designed to produce a force of 5000N, determine
a:the area of the slave piston
b:the radius of the slave piston

Respuesta :

Answer:

[tex]625\ \text{cm}^2[/tex]

[tex]14.1\ \text{cm}[/tex]

Explanation:

[tex]F_1[/tex] = Force applied to master piston = 200 N

[tex]F_2[/tex] = Force applied to slave piston = 5000 N

[tex]A_1[/tex] = Area of master piston = [tex]25\ \text{cm}^2[/tex]

[tex]A_2[/tex] = Area of slave piston

r = Radius of slave piston

From Pascal's law we have

[tex]\dfrac{F_1}{A_1}=\dfrac{F_2}{A_2}\\\Rightarrow A_2=\dfrac{F_2}{F_1}A_1\\\Rightarrow A_2=\dfrac{5000}{200}\times 25\\\Rightarrow A_2=625\ \text{cm}^2[/tex]

The area of the slave piston is [tex]625\ \text{cm}^2[/tex]

Area of the slave piston is given by

[tex]A_2=\pi r^2\\\Rightarrow r=\sqrt{\dfrac{A_2}{\pi}}\\\Rightarrow r=\sqrt{\dfrac{625}{\pi}}\\\Rightarrow r=14.1\ \text{cm}[/tex]

The radius of the slave piston is [tex]14.1\ \text{cm}[/tex].