Respuesta :

Answer:

e^3.......................

timo86

Answer:

[tex]e^{3}[/tex]

Step-by-step explanation:

// since evaluating limits of the numerator and denominator would result in an indeterminate form, use the L'Hopital's rule

[tex]\lim_{x \to \ 3} (\frac{\frac{d}{dx} (e^{x} - e^{3} } {\frac{d}{dx} (x-3)} )[/tex]

// calculate the derivative

[tex]\lim_{x \to \ 3} (\frac{e^{x} }{\frac{d}{dx} (x-3)} )[/tex]

[tex]\lim_{x \to \ 3} (\frac{e^{x} }{1} )[/tex]

[tex]\lim_{x \to \ 3} (e^{x})[/tex]

// evaluate the limit

[tex]e^{3}[/tex]