Respuesta :

Given:

The equation is

[tex]\log_318+\log_33-\log_3x=3[/tex]

To find:

The solution for the given equation.

Solution:

We have,

[tex]\log_318+\log_33-\log_3x=3[/tex]

Using the properties of logarithm, we get

[tex]\log_3(18\times 3)-\log_3x=3[/tex]       [tex]\left[\because \log(ab)=\log a+\log b\right][/tex]

[tex]\log_3(54)-\log_3x=3[/tex]

[tex]\log_3\left(\dfrac{54}{x}\right)=3[/tex]       [tex]\left[\because \log(\dfrac{a}{b})=\log a-\log b\right][/tex]

[tex]\dfrac{54}{x}=3^3[/tex]       [tex][\because \log_ab=x\Leftrightarrow b=a^x][/tex]

On further simplification, we get

[tex]\dfrac{54}{x}=27[/tex]

[tex]\dfrac{54}{27}=x[/tex]

[tex]2=x[/tex]

Therefore, the value of x is 2.

Answer:

-1.631

Step-by-step explanation:

Got the answer on edge