Consider a population that grows to the recursive rule Pn= Pn-1 + 50,
with initial population Po = 200
(a) Use the recursive formula to find: p1 and p2
(b) Find an explicit formula for the population.
(c) Use the explicit formula to find P60

Respuesta :

Answer:

a)   P₁  = 250 and    P₂ = 300

b) The explicit formula   Pₙ = 150+ 50 n

c)  [tex]P_{60} = 3150[/tex]

Step-by-step explanation:

Step(i):-

Given that Pₙ = pₙ₋₁ +50 and P₀ = 200

Put n =1

         P₁ = P₀+50 = 200+50 = 250

Put n =2

         P₂ = P₁+50 = 250+50 = 300

Put n=3

       P₃ = P₂+50 = 300+50 = 350

and so on

The sequence     200,250,300,350,..

Step(ii):-

The sequence     200,250,300,350,.. is an arithmetic sequence

The explicit formula

       Pₙ = a+(n-1)d

       Pₙ = 200+(n-1)50

       Pₙ = 200+ 50 n -50

        Pₙ = 150+ 50 n

The explicit formula   Pₙ = 150+ 50 n

c)

The [tex]n^{th}[/tex] term of the sequence

       Pₙ = 150+ 50 n

put n=60

      [tex]P_{60} = 150 + 50 (60) = 3150[/tex]