Answer:
[tex]\displaystyle d \approx 7.07[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Algebra I
- Reading a Cartesian plane
- Coordinates (x, y)
Algebra II
- Distance Formula: [tex]\displaystyle d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
Step-by-step explanation:
Step 1: Define
Point C (-2, 0)
Point D (3, 5)
Step 2: Find distance d
Simply plug in the 2 coordinates into the distance formula to find distance d
- Substitute in points [Distance Formula]: [tex]\displaystyle d = \sqrt{(3+2)^2+(5-0)^2}[/tex]
- [√Radical] (Parenthesis) Add/Subtract: [tex]\displaystyle d = \sqrt{(5)^2+(5)^2}[/tex]
- [√Radical] Evaluate exponents: [tex]\displaystyle d = \sqrt{25+25}[/tex]
- [√Radical] Add: [tex]\displaystyle d = \sqrt{50}[/tex]
- [√Radical] Simplify: [tex]\displaystyle d = 5\sqrt{2}[/tex]
- [√Radical] Evaluate: [tex]\displaystyle d = 7.07107[/tex]
- Round: [tex]\displaystyle d \approx 7.07[/tex]