Respuesta :

Given:

The equation of the ellipse is

[tex]3x^2+2y^2=k[/tex]

The length of its major axis is 6.

To find:

The value of k.

Solution:

The standard form of an ellipse is

[tex]\dfrac{x^2}{b^2}+\dfrac{y^2}{a^2}=1[/tex]

Where, a>b and 3a is the length of major axis.

We have,

[tex]3x^2+2y^2=k[/tex]

Divide both sides by k.

[tex]\dfrac{3x^2+2y^2}{k}=\dfrac{k}{k}[/tex]

[tex]\dfrac{x^2}{\frac{k}{3}}+\dfrac{y^2}{\frac{k}{2}}=1[/tex]

[tex]\dfrac{x^2}{(\sqrt{\frac{k}{3}})^2}+\dfrac{y^2}{(\sqrt{\frac{k}{2}})^2}=1[/tex]

Here, [tex]\sqrt{\frac{k}{2}}>\sqrt{\frac{k}{3}}[/tex].

So, the length of the major axis is

[tex]2\sqrt{\dfrac{k}{2}}=6[/tex]

[tex]\sqrt{\dfrac{k}{2}}=3[/tex]

[tex]\dfrac{k}{2}=9[/tex]

[tex]k=18[/tex]

Therefore, the value of k is 18.