Respuesta :

Answer:

1. 36 [tex]m^{2}[/tex]

2. 333.125 [tex]ft^{3}[/tex]

3. 210 [tex]ft^{3}[/tex]

4. Yes, Martina's estimate is reasonable.

Step-by-step explanation:

Numbering the rectangular surfaces, we have:

Area of a rectangle = length x width

For surface 1: Area = 2 x 2.4

                                = 4.8 [tex]m^{2}[/tex]

For surface 2: Area = 3 x 2.4

                                = 7.2 [tex]m^{2}[/tex]

For surface 3: Area = 3 x 2

                                = 6.0 [tex]m^{2}[/tex]

For surface 4: Area = 3 x 2.4

                                = 7.2 [tex]m^{2}[/tex]

For surface 5: Area = 2 x 2.4

                                = 4.8 [tex]m^{2}[/tex]

For surface 6: Area = 3 x 2

                                = 6.0 [tex]m^{2}[/tex]

Total surface area of the rectangular prism = (2 x 4.8) + (2 x 7.2) + (2 x 6.0)

                                        = 36 [tex]m^{2}[/tex]

2. length = 10.25 ft

width = 5 ft

height = 6.5 ft

Thus,

volume = l x w x h

            = 10.25 x 5 x 6.5

            = 333.125 [tex]ft^{3}[/tex]

3. length = 15 ft

width = 7 ft

height = 2 ft

So that,

volume = l x w x h

            = 15 x 7 x 2

            = 210 [tex]ft^{3}[/tex]

4. For a rectangular prism, area of the opposite surfaces are equal. So that;

Area of rectangle = length x width

For surface 1: Area = 13.0 x 6

                               = 78.0 [tex]ft^{2}[/tex]

For surface 2: Area = 13.0 x 8

                                = 104.0 [tex]ft^{2}[/tex]

For surface 3: Area = 6 x 8

                                = 48 [tex]ft^{2}[/tex]

Surface area of the prism = (2 x 78.0) + (2 x 104.0) + (2 x 48)

                                          = 460.0 [tex]ft^{2}[/tex]

Therefore, Martina's estimate is reasonable.