Respuesta :

Answer:

[tex](f o g)(x) = 2x + 9[/tex]

[tex](g o f)(x) = 2x + 15[/tex]

[tex](f o g)(2) = 11[/tex]

Step-by-step explanation:

Given

[tex]f(x) = x+6[/tex]

[tex]g(x) = 2x + 3[/tex]

Solving (a): (f o g)(x)

In functions:

[tex](f o g)(x) = f(g(x))[/tex]

Solving for f(g(x))

[tex]f(x) = x+6[/tex]

[tex]f(g(x)) = 2x + 3 + 6[/tex]

[tex]f(g(x)) = 2x + 9[/tex]

So:

[tex](f o g)(x) = 2x + 9[/tex]

Solving (a): (g o f)(x)

In functions:

[tex](g o f)(x) = g(f(x))[/tex]

Solving for g(f(x))

[tex]g(x) = 2x + 3[/tex]

[tex]g(f(x)) = 2(x+6)+3[/tex]

Open bracket

[tex]g(f(x)) = 2x+12+3[/tex]

[tex]g(f(x)) = 2x+15[/tex]

So:

[tex](g o f)(x) = 2x + 15[/tex]

Solving (c): (f o g)(2)

In (a):

[tex](f o g)(x) = 2x + 9[/tex]

Substitute 2 for x

[tex](f o g)(2) = 2*2 + 9[/tex]

[tex](f o g)(2) = 4 + 9[/tex]

[tex](f o g)(2) = 11[/tex]