Respuesta :
Answer:
[tex]\displaystyle d \approx 6.4[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
- Left to Right
Algebra I
- Coordinates (x, y)
Algebra II
- Distance Formula: [tex]\displaystyle d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
Step-by-step explanation:
Step 1: Define
Point (-8, -6)
Point (-3, -2)
Step 2: Find distance d
Simply plug in the 2 coordinates into the distance formula to find distance d
- Substitute in points [Distance Formula]: [tex]\displaystyle d = \sqrt{(-3+8)^2+(-2+6)^2}[/tex]
- [√Radical] (Parenthesis) Add: [tex]\displaystyle d = \sqrt{(5)^2+(4)^2}[/tex]
- [√Radical] Evaluate exponents: [tex]\displaystyle d = \sqrt{25+16}[/tex]
- [√Radical] Add: [tex]\displaystyle d = \sqrt{41}[/tex]
- [√Radical] Evaluate: [tex]\displaystyle d = 6.40312[/tex]
- Round: [tex]\displaystyle d \approx 6.4[/tex]
Answer:
6.4
Step-by-step explanation:
d=√((−3−(−8))^2+(−2−(−6))^2)
d=√((5)^2+(4)^2)
d=√(25+16)
d=√(41)
d=6.403124
d=6.4