Respuesta :

Answer:

By closure property of multiplication and addition of integers,

If [tex]x + \dfrac{1}{x}[/tex] is an integer

∴ [tex]\left ( x + \dfrac{1}{x} \right) ^3 = x^3 + \dfrac{1}{x^3} +3\cdot \left (x + \dfrac{1}{x} \right )[/tex] is an integer

From which we have;

[tex]x^3 + \dfrac{1}{x^3}[/tex] is an integer

Step-by-step explanation:

The given expression for the positive integer is x + x⁻¹

The given expression can be written as follows;

[tex]x + \dfrac{1}{x}[/tex]

By finding the given expression raised to the power 3, sing Wolfram Alpha online, we we have;

[tex]\left ( x + \dfrac{1}{x} \right) ^3 = x^3 + \dfrac{1}{x^3} +3\cdot x + \dfrac{3}{x}[/tex]

By simplification of the cube of the given integer expressions, we have;

[tex]\left ( x + \dfrac{1}{x} \right) ^3 = x^3 + \dfrac{1}{x^3} +3\cdot \left (x + \dfrac{1}{x} \right )[/tex]

Therefore, we have;

[tex]\left ( x + \dfrac{1}{x} \right) ^3 - 3\cdot \left (x + \dfrac{1}{x} \right )= x^3 + \dfrac{1}{x^3}[/tex]

By rearranging, we get;

[tex]x^3 + \dfrac{1}{x^3} = \left ( x + \dfrac{1}{x} \right) ^3 - 3\cdot \left (x + \dfrac{1}{x} \right )[/tex]

Given that  [tex]x + \dfrac{1}{x}[/tex] is an integer, from the closure property, the product of two integers is always an integer, we have;

[tex]\left ( x + \dfrac{1}{x} \right) ^3[/tex] is an integer and [tex]3\cdot \left (x + \dfrac{1}{x} \right )[/tex] is also an integer

Similarly the sum of two integers is always an integer, we have;

[tex]\left ( x + \dfrac{1}{x} \right) ^3 + \left(- 3\cdot \left (x + \dfrac{1}{x} \right ) \right )[/tex] is an integer

[tex]\therefore x^3 + \dfrac{1}{x^3} = \left ( x + \dfrac{1}{x} \right) ^3 - 3\cdot \left (x + \dfrac{1}{x} \right )= \left ( x + \dfrac{1}{x} \right) ^3 + \left(- 3\cdot \left (x + \dfrac{1}{x} \right ) \right )[/tex] is an integer

From which we have;

[tex]x^3 + \dfrac{1}{x^3}[/tex] is an integer.