Respuesta :

Answer:

The value of j = -5

Step-by-step explanation:

Given the points of the line

  • (j, – 9)
  • ( – 10, – 4)

Slope m = -1

To determine the value of j, we need to use the slope formula

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

Here:

  • [tex]\left(x_1,\:y_1\right)=\left(j,\:-9\right)[/tex]
  • [tex]\left(x_2,\:y_2\right)=\left(-10,\:-4\right )[/tex]

Now, substitute (x₁, y₁) = (j, -9)  and (x₂, y₂) = (-10, -4) in the formula

[tex]m=\frac{-4-\left(-9\right)}{-10-j}[/tex]

We are already given m = -1. Therefore, we need to substitute m = -1 in the formula and solve for j

[tex]-1=\frac{-4-\left(-9\right)}{-10-j}[/tex]

Multiply both sides by -10 -  j

[tex]-1\cdot \left(-10-j\right)=\frac{5}{-10-j}\left(-10-j\right)[/tex]

Simplify

[tex]-\left(-10-j\right)=5[/tex]

Divide both sides by -1

[tex]\frac{-\left(-10-j\right)}{-1}=\frac{5}{-1}[/tex]

Simplify

[tex]-10-j=-5[/tex]

Add 10 to both sides

[tex]-10-j+10=-5+10[/tex]

Simplify

[tex]-j=5[/tex]

Divide both sides by -1

[tex]\frac{-j}{-1}=\frac{5}{-1}[/tex]

Simplify

[tex]j=-5[/tex]

Therefore, the value of j = -5

Verification:

As the value of j = -5

Now we have the points

  • (-5, – 9)
  • ( – 10, – 4)

Now, we need to check whether the slope between the points (-5, -9) and (-10, -4) is -1 or not.

Let us determine the slope between the points (-5, -9) and (-10, -4)

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

Here:

Now, substitute (x₁, y₁) = (-5, -9)  and (x₂, y₂) = (-10, -4) in the formula

[tex]m=\frac{-4-\left(-9\right)}{-10-\left(-5\right)}[/tex]

[tex]m=\frac{-4+9}{-10+5}[/tex]

[tex]m=\frac{5}{-5}[/tex]

Apply fraction rule:  [tex]\frac{a}{-b}=-\frac{a}{b}[/tex]

[tex]m=-\frac{5}{5}[/tex]

[tex]m=-1[/tex]

Therefore, we verified that the slope of the line containing the points (-5, -9) and (-10, -4) is indeed m = -1.