This cone has a height of 27 centimeters and a diameter of 32 centimeters. What is the volume, in cubic centimeters, of the cone? Volume = cm3
can somebody help me with this.

Respuesta :

Answer:

The area of cone is 7240cm³.

Step-by-step explanation:

Given that the diameter is 2 times greater than radius.

So the radius of this cone will be 16cm.

Next, we have to apply volume formula, V = (1/3)×(area of circle)×height.

Formula for area of circle is A = π×r² :

[tex]V = \frac{1}{3} \times \pi \times {r}^{2} \times h[/tex]

[tex]V = \frac{1}{3} \times \pi \times {16}^{2} \times 27[/tex]

[tex]V = 7240 { \: cm}^{3} \: \: (3sf)[/tex]

Answer:

The volume of cylinder is 7234.56 cm³.

Step-by-step explanation:

Given :

  • [tex]\small\purple\bull[/tex] Height of cone = 27 cm.
  • [tex]\small\purple\bull[/tex] Diameter of cone = 32 cm

To Find :

  • [tex]\small\purple\bull[/tex] Radius of cone
  • [tex]\small\purple\bull[/tex] Volume of cone

Using Formulas :

[tex]\star{\small{\underline{\boxed{\sf{\pink{R = \dfrac{D}{2}}}}}}}[/tex]

  • [tex]\blue\star[/tex] R = Radius
  • [tex]\blue\star[/tex] D = Diameter

[tex]\star{\small{\underline{\boxed{\sf{\pink{Volume_{(Cone)} = \dfrac{1}{3}\pi{r}^{2}h}}}}}}[/tex]

  • [tex]\blue\star[/tex] π = 3.14
  • [tex]\blue\star[/tex] r = radius
  • [tex]\blue\star[/tex] h = height

Solution :

Finding the radius of cone by substituting the values in the formula :

[tex]\implies{\sf{Radius = \dfrac{D}{2}}}[/tex]

[tex]\implies{\sf{Radius = \dfrac{32}{2}}}[/tex]

[tex]\implies{\sf{Radius = \cancel{\dfrac{32}{2}}}}[/tex]

[tex]\implies{\sf{\underline{\underline{\red{Radius = 16 \: cm}}}}}[/tex]

Hence, the radius of cone is 16 cm.

[tex]\rule{200}2[/tex]

Now, finding the volume of cone by substituting the values in the formula :

[tex]{\implies{\sf{Volume_{(Cone)} = \dfrac{1}{3}\pi{r}^{2}h}}}[/tex]

[tex]{\implies{\sf{Volume_{(Cone)} = \dfrac{1}{3} \times 3.14 \times {(16)}^{2} \times 27}}}[/tex]

[tex]{\implies{\sf{Volume_{(Cone)} = \dfrac{1}{\cancel{3}} \times \dfrac{314}{100} \times {(16 \times 16)}\times \cancel{27}}}}[/tex]

[tex]{\implies{\sf{Volume_{(Cone)} = \dfrac{314}{100} \times 256 \times 9}}}[/tex]

[tex]{\implies{\sf{Volume_{(Cone)} = \dfrac{314}{100} \times 2304}}}[/tex]

[tex]{\implies{\sf{Volume_{(Cone)} = \dfrac{314 \times 2304}{100}}}}[/tex]

[tex]{\implies{\sf{Volume_{(Cone)} = \dfrac{723456}{100}}}}[/tex]

[tex]{\implies{\sf{\underline{\underline{\red{Volume_{(Cone)} = 7234.56 \: {cm}^{3}}}}}}}[/tex]

Hence, the volume of cone is 7234.56 cm³.

[tex]\rule{300}{1.5}[/tex]