Find the area of equilateral triangle with side a. Please answer with completely simplified exact values. Answer: A = sq. Units

Respuesta :

Solution :

It is given that the length of a side of a triangle is given by 'a'.

It is an equilateral triangle.

So the three sides will be of equal length and is a, a, a units.

Now the semi perimeter of the equilateral triangle is given by :

[tex]$S=\frac{a+a+a}{2}$[/tex]

  [tex]$=\frac{3}{2}a$[/tex]

Therefore, using the Heron's formula, we can find the area of the equilateral triangle.

Area of the equilateral triangle is given by :

[tex]$A =\sqrt{S(S-a)(S-a)(S-a)}$[/tex]

[tex]$A =\sqrt{\frac{3a}{2}\left(\frac{3a}{2}-a\right)\left(\frac{3a}{2}-a\right)\left(\frac{3a}{2}-a\right)}$[/tex]

[tex]$A=\frac{\sqrt3}{4}a^2$[/tex] square units.