Respuesta :

Given:

The ratio of the measures of the three sides of a triangle is [tex]\dfrac{1}{4}:\dfrac{1}{3}:\dfrac{1}{6}[/tex].

Its perimeter is 31.4 centimeters

To find:

The shortest side of the triangle.

Solution:

Let the measures of the three sides of a triangle are [tex]\dfrac{1}{4}x,\dfrac{1}{3}x,\dfrac{1}{6}x[/tex] respectively (in cm).

Its perimeter is 31.4 centimeters.

[tex]\dfrac{1}{4}x+\dfrac{1}{3}x+\dfrac{1}{6}x=31.4[/tex]

[tex]\dfrac{3x+4x+2x}{12}=31.4[/tex]

[tex]\dfrac{9x}{12}=31.4[/tex]

[tex]\dfrac{3x}{4}=31.4[/tex]

On further simplification, we get

[tex]3x=4\times 31.4[/tex]

[tex]3x=125.6[/tex]

Divide both sides by 3.

[tex]x=\dfrac{125.6}{3}[/tex]

[tex]x=41.867[/tex]

Now, the sides of triangle are

[tex]\dfrac{1}{4}(41.867)=10.467[/tex]

[tex]\dfrac{1}{3}(41.867)=13.956[/tex]

[tex]\dfrac{1}{6}(41.867)=6.978[/tex]

Therefore, the length of the shortest side is 6.978 cm.