Respuesta :

[tex] \sf{(i)  \: We \:  are \:  given  \: a  \: figure \:  of  \: Series \:  Circuit. }[/tex]

[tex] \sf{Here \:  Resistances  \: are ,}[/tex]

[tex] \sf• \:  R_{1}  =3  Ω[/tex]

[tex] \sf•  \: R_{2}  =3Ω[/tex]

[tex] \sf•  \: R_{3}  =3Ω[/tex]

[tex] \sf{We \:  know  \: the  \: formula  \: of  \: the  \: Equivalent \:  Resistance \:  for  \: Series  \: Circuit, }[/tex]

[tex] \bf \red {\bigstar  {\: R_{s}  =  R _{1}  +  R _{2}  +  R_{3}+...+ R_{n}}}[/tex]

[tex] \sf ⇒ R_{s} =(3 + 3 + 3)Ω[/tex]

[tex] \sf \therefore R_{s}  =9Ω[/tex]

[tex] \sf  \pink{ \boxed{Answer : 9 Ω.}}[/tex]

[tex] \\  \\ [/tex]

[tex] \sf{(ii)  \: We \:  are \:  given  \: a  \: figure \:  of  \: Parallel \:  Circuit. }[/tex]

[tex]\sf{Here \:  Resistances  \: are ,}[/tex]

[tex] \sf• \:  R_{1}  =3  Ω[/tex]

[tex] \sf• \:  R_{2}  =3  Ω[/tex]

[tex] \sf• \:  R_{3}  =3  Ω[/tex]

[tex] \sf{We \:  know  \: the  \: formula  \: of  \: the  \: Equivalent \:  Resistance \:  for  \: Parallel  \: Circuit, }[/tex]

[tex] \bf \red {\bigstar  {\:  \frac{1}{R_{p}}  =   \frac{1}{R _{1}}  +   \frac{1}{R_{2}}  +  \frac{1}{R_{3}}+...+\frac{1}{R_{n}} }}[/tex]

[tex] \sf⇒ \frac{1}{ R_{p} }  =  \frac{1}{3}  +  \frac{1}{3}  +  \frac{1}{3} [/tex]

[tex] \sf⇒ \frac{1}{ R_{p} }  =  \frac{1 + 1 + 1}{3} [/tex]

[tex] \sf⇒ \frac{1}{ R_{p} }  =  \frac{3}{3} [/tex]

[tex] \sf⇒ \frac{1}{ R_{p} }  =  1[/tex]

[tex] \sf \therefore R_{p}   =  1Ω[/tex]

[tex] \sf  \pink{ \boxed{Answer : 1 Ω.}}[/tex]

1st one is series circuit and the 2nd one is parallel circuit.

Answer is 1 ohm.

hope it helps you.