Respuesta :
[tex] \bf \underline{Given :-}[/tex]
[tex] \sf{• \: An \: electric \: heater \: draws \: a \: current \: of \: 5 \: ampere \: from \: 220 \: volt \: supply.}[/tex]
[tex] \\ [/tex]
[tex]\bf{ \underline{To \: Find:- }}[/tex]
[tex] \sf• \: ( a) \: lts \: resistance.[/tex]
[tex] \sf• \: (b) \: electrical \: energy \: consumed \: in \: kwh \: if \: it \: is \: used \: for \: 4 \: hours.[/tex]
[tex] \\ [/tex]
[tex]\huge\bf{ \underline{ Solution :-}}[/tex]
[tex] { \boxed{\bf{(a)}}}[/tex]
[tex] \sf• \: Current \: (I) = 5 \: A[/tex]
[tex] \sf• \: Voltage \: (V) = 220 \: v[/tex]
[tex] \bf \red{\bigstar{\: Formula \: of \: Resistance \: (R) = \frac{V}{I} }}[/tex]
[tex] \sf \rightarrow R = \frac{220}{5} [/tex]
[tex] \sf \rightarrow R =44[/tex]
[tex] \bf{Hence, \: it's \: resistance \: is \: \: 44 \: Ω \: .}[/tex]
[tex] \\ \\ [/tex]
[tex] { \boxed{\bf{(b)}}}[/tex]
[tex] \sf• \: Current \: (I) = 5 \: A[/tex]
[tex] \sf• \: Voltage \: (V) = 220 \: v[/tex]
[tex] \bf \red{\bigstar{\: Formula \: of \: Electric \: Power \: (P) = IV }}[/tex]
[tex] \sf \rightarrow P = (5 \times 220) [/tex]
[tex] \sf \rightarrow P = 1100 \:[/tex]
[tex] \\ [/tex]
[tex] \sf \therefore \: P = 1100 \: watt[/tex]
[tex] \sf{• \: Time \: (t) = 4 \: hours }[/tex]
[tex] \bf \red{\bigstar{ \: Formula \: of \: Energy \: (W) = Pt}}[/tex]
[tex] \sf \rightarrow W= 1100 \times 4[/tex]
[tex] \sf \rightarrow W = 4400[/tex]
[tex] \sf \rightarrow W = \frac{4400}{1000} [/tex]
[tex] \sf \rightarrow W = 4.4[/tex]
[tex] \sf \therefore W = 4.4 \: kwh[/tex]
[tex] \bf{Hence, \: Electrical \: Energy \: is \: 4.4 \: kwh.}[/tex]