Respuesta :

Answer:

[tex]Rate = 1[/tex]

Step-by-step explanation:

Given

[tex]g(x) = x + 7[/tex]

Interval: (-2,4)

Required

Determine the average rate of change

This is calculated using:

[tex]Rate = \frac{g(b) - g(a)}{b-a}[/tex]

Where:

[tex](a,b) = (-2,4)[/tex]

So, we have:

[tex]Rate = \frac{g(4) - g(-2)}{4-(-2)}[/tex]

[tex]Rate = \frac{g(4) - g(-2)}{4+2}[/tex]

[tex]Rate = \frac{g(4) - g(-2)}{6}[/tex]

Calculate g(4) and g(-2)

[tex]g(4) = 4 + 7 = 11[/tex]

[tex]g(-2) = -2 + 7 = 5[/tex]

So:

[tex]Rate = \frac{11 - 5}{6}[/tex]

[tex]Rate = \frac{6}{6}[/tex]

[tex]Rate = 1[/tex]

Hence, the average rate of change is 1