Respuesta :

Answer:

see in the pic, we have: E(-5; -3), F(-3; -6), A(-5; -8), B(1,-8), C(3; -5), D(1;0)

=> AB = 6

[tex]bc = \sqrt{(3 - 1) {}^{2} + ( - 5 + 8) {}^{2} } = \sqrt{13} \\ \\ \\ cd = \sqrt{(1 - 3) {}^{2} + ( - 5) {}^{2} } = \sqrt{29} \\ \\ \\ [/tex]

[tex]de = \sqrt{( - 5 - 1) {}^{2} + ( - 3) {}^{2} } = 3 \sqrt{5} [/tex]

[tex]ef = \sqrt{( - 3 + 5) {}^{2} + ( - 6 + 3) {}^{2} } = \sqrt{13} [/tex]

[tex]fa = \sqrt{( - 5 + 3) {}^{2} + ( - 8 + 6) {}^{2} } = 2 \sqrt{2} [/tex]

the perimeter of the shape = AB + BC + CD + DE + EF + FA

[tex] = 6 + \sqrt{13} + \sqrt{29} +3 \sqrt{5} + \sqrt{13} + 2 \sqrt{2} [/tex]

[tex] = 28.13[/tex]