Respuesta :

Given :

  • [tex] \sf l = p(v_{2} - v_{1})[/tex]

To Find :

  • [tex] \tt v_{2} = ?[/tex]

Solution :

[tex] \sf \dashrightarrow l = p(v_{2} - v_{1})[/tex]

[tex] \sf \dashrightarrow \dfrac{l}{p} = v_{2} - v_{1}[/tex]

[tex] \sf \dashrightarrow \dfrac{l}{p} + v_{1} = v_{2}[/tex]

[tex] \sf \dashrightarrow v_{2} = \dfrac{l}{p} + v_{1}[/tex]

[tex] \large \underline{\boxed{\bf{v_{2} = \dfrac{l}{p} + v_{1}}}}[/tex]

Hence, value of [tex] \sf v_{2} = \dfrac{l}{p} + v_{1}[/tex]