Assume varies inversely with . Find the constant of proportionality and the function.
1. = 8 when = 5
2. = 3 when = 11
3. = 50 when = 100

Respuesta :

Answer:

[tex]k = 40[/tex] and [tex]y = \frac{40}{x}[/tex]

[tex]k = 33[/tex] and  [tex]y = \frac{33}{x}[/tex]

[tex]k = 5000[/tex] and [tex]y = \frac{5000}{x}[/tex]

Step-by-step explanation:

Given

y varies inversely with x.

This is represented as:

[tex]y =\frac{k}{x}[/tex]

Where k is the constant of proportionality.

(a): [tex]y = 8\ when\ x= 5[/tex]

This gives:

[tex]8 =\frac{k}{5}[/tex]

[tex]k = 8 * 5[/tex]

[tex]k = 40[/tex] --  the constant of proportionality.

To calculate the function, substitute 40 for k in [tex]y =\frac{k}{x}[/tex]

[tex]y = \frac{40}{x}[/tex]

[tex](b): y= 3\ when\ x = 11[/tex]

This gives:

[tex]3 =\frac{k}{11}[/tex]

[tex]k = 3 * 11[/tex]

[tex]k = 33[/tex] --  the constant of proportionality.

To calculate the function, substitute 33 for k in [tex]y =\frac{k}{x}[/tex]

[tex]y = \frac{33}{x}[/tex]

[tex](c): y= 50\ when\ x = 100[/tex]

This gives:

[tex]50 =\frac{k}{100}[/tex]

[tex]k = 50 * 100[/tex]

[tex]k = 5000[/tex] --  the constant of proportionality.

To calculate the function, substitute 5000 for k in [tex]y =\frac{k}{x}[/tex]

[tex]y = \frac{5000}{x}[/tex]