Respuesta :

Given :

In ∆ABC,

  • ∠A = 60°
  • ∠B = 60°
  • BC = 12 units
  • ∠BDC = 90°

To Find :

  • Area of ∆ABC = ?

Solution :

As, we have :

  • ∠A = 60°
  • ∠B = 60°

So, By angle sum property of triangle :

∠A + ∠B + ∠C = 180°

[tex] \tt : \implies 60\degree + 60\degree + \angle C = 180\degree[/tex]

[tex] \tt : \implies 120\degree + \angle C = 180\degree[/tex]

[tex] \tt : \implies \angle C = 180\degree - 120\degree[/tex]

[tex] \tt : \implies \angle C = 60\degree[/tex]

Now, we have :

  • ∠A = 60°
  • ∠B = 60°
  • ∠C = 60°

As, all angles are of same length, therefore it is a equilateral triangle.

We know that sides of equilateral triangle are equal.

[tex] \tt : \implies AB = BC = AC[/tex]

Now, we have BC = 12 units.

Hence, all sides are of 12 units.

Now, we know that area of equilateral triangle is :

[tex] \large \underline{\boxed{\bf{Area_{(equilateral \: triangle)} = \dfrac{\sqrt{3}}{4} side^{2}}}}[/tex]

[tex] \tt : \implies Area = \dfrac{\sqrt{3}}{4} \times (12 \: units)^{2}[/tex]

[tex] \tt : \implies Area = \dfrac{\sqrt{3}}{\cancel{4}} \times \cancel{144} \: units^{2}[/tex]

[tex] \tt : \implies Area = \sqrt{3} \times 36 \: units^{2}[/tex]

[tex] \tt : \implies Area = 36\sqrt{3} units^{2}[/tex]

So, Area of given triangle is 36√3 units².