Write the equation for a parabola with a focus at (−4,8)(-4,8)(−4,8)left parenthesis, minus, 4, comma, 8, right parenthesis and a directrix at x=−6x=-6x=−6x, equals, minus, 6.

Respuesta :

Given:

The focus of the parabola is at (-4,8).

The directrix is at x=-6.

To find:

The equation of the parabola.

Solution:

The directrix is at x=-6, which is a vertical line. So, the parabola is horizontal.

The equation of a horizontal parabola is

[tex](y-k)^2=4p(x-h)[/tex]

Where, (h,k) is vertex, (h+p,k) is focus and x=h-p.

The focus of the parabola is at (-4,8).

[tex](h+p,k)=(-4,8)[/tex]

[tex]h+p=-4[/tex]             ...(i)

[tex]k=8[/tex]

The directrix is at x=-6.

[tex]h-p=-6[/tex]            ...(ii)

Adding (i) and (ii), we get

[tex]2h=-10[/tex]

[tex]h=-5[/tex]

Putting h=-5 in (i), we get

[tex]-5+p=-4[/tex]

[tex]p=-4+5[/tex]

[tex]p=1[/tex]

Putting h=-5, k=8 and p=1 in the standard form of the parabola.

[tex](y-8)^2=4(1)(x-(-5))[/tex]

[tex](y-8)^2=4(x+5)[/tex]

Therefore, the required equation of the parabola is [tex](y-8)^2=4(x+5)[/tex].