Respuesta :

Answer:

[tex]A = \frac{Cr}{2}[/tex]

Step-by-step explanation:

Given

[tex]A = \frac{C}{4}[/tex]

Required

Describe another way to get area from circumference

Circumference C is calculated using:

[tex]C = 2\pi r[/tex]

Area, A is calculated using:

[tex]A = \pi r^2[/tex]

Using: [tex]C = 2\pi r[/tex]

Divide both sides by 2

[tex]\frac{C}{2} = \frac{2\pi r}{2}[/tex]

[tex]\frac{C}{2} = \pi r[/tex]

Multiply both sides by r

[tex]r*\frac{C}{2} = \pi r*r[/tex]

[tex]r*\frac{C}{2} = \pi r^2[/tex]

[tex]\frac{Cr}{2} = \pi r^2[/tex]

The expression on the right-hand side is the area.

So, substitute [tex]\pi r^2[/tex] for A

[tex]\frac{Cr}{2} = A[/tex]

Reorder

[tex]A = \frac{Cr}{2}[/tex]