Respuesta :

Answer:

______________________________________________________

TRIGONOMETRY IDENTITIES TO BE USED IN THE QUESTION :-

For any right angled triangle with one angle α ,

  • [tex]\cos (90 - \alpha ) = \sin \alpha[/tex]  or  [tex]\sin(90 - \alpha ) = \cos\alpha[/tex]
  • [tex]cosec \: (90 - \alpha ) = \sec\alpha[/tex]   or  [tex]\sec(90 - \alpha ) = cosec\:\alpha[/tex]

SOME GENERAL TRIGNOMETRIC FORMULAS :-

  • [tex]\sin \alpha = \frac{1}{cosec \: \alpha }[/tex]  or  [tex]cosec \: \alpha = \frac{1}{\sin \alpha }[/tex]
  • [tex]\cos \alpha = \frac{1}{\sec \alpha }[/tex]  or  [tex]\sec \alpha = \frac{1}{\cos \alpha }[/tex]

______________________________________________________

Now , lets come to the question.

In a right angled triangle , let one angle be α (in place of theta) .

So , lets solve L.H.S.

[tex]\cos (90 - \alpha ) \times cosec(90 - \alpha )[/tex]

[tex]=> sin\alpha \times \sec\alpha[/tex]

[tex]=> \sin\alpha \times \frac{1}{\cos\alpha }[/tex]

[tex]=> \frac{\sin\alpha }{\cos\alpha }[/tex]

[tex]=> \tan\alpha[/tex] = R.H.S.

∴ L.H.S. = R.H.S. (Proved)