Respuesta :
Answer:
a) [tex]v_{fb+B}=4.46\: m/s[/tex]
b) [tex]v_{fc}=1.21\: m/s[/tex]
Explanation:
a) Let's use the conservation of linear momentum.
[tex]m_{b}v_{iv}=m_{B}v_{f}+m_{b}v_{f}[/tex]
Where:
- m(b) is mass of bullet (0.03 kg)
- v(ib) is the initial velocity of the bullet (450 m/s)
- m(B) is the mass of the block (3 kg)
- v(f) is the final velocity of the bullet and the block
[tex]m_{b}v_{iv}=m_{B}v_{f}+m_{b}v_{f}[/tex]
[tex]v_{f}=\frac{m_{b}v_{iv}}{m_{B}+m_{b}}[/tex]
[tex]v_{f}=\frac{0.03*450}{0.03+3}[/tex]
[tex]v_{fb+B}=4.46\: m/s[/tex]
b) As we have an external force between B and C we can not use the conservation of linear momentum here. We need to use the work definition.
The work here is due to the friction force.
[tex]W=\Delta K[/tex]
[tex]W=K_{f}-K_{i}[/tex]
[tex]-\mu m_{B}g=0.5(m_{b}+m_{B}+m_{C})v_{f}^{2}-0.5(m_{b}+m_{B})v_{i}^{2}[/tex]
[tex]-\mu m_{B}g=0.5(m_{b}+m_{B}+m_{C})v_{f}^{2}-0.5(m_{b}+m_{B})v_{i}^{2}[/tex]
[tex]-0.2*3*9.81=0.5(0.03+3+30)v_{f}^{2}-0.5(0.03+3)4.46^{2}[/tex]
[tex]v_{f}^{2}=\frac{-0.2*3*9.81+0.5(0.03+3)4.46^{2}}{0.5(0.03+3+30)}[/tex]
[tex]v_{fC}=1.21\: m/s[/tex]
I hope it helps you!