Answer:
Answer is explained in the explanation section below.
Explanation:
Data Given:
LSL = 4.96 cm
USL = 5.04 cm
Mean = 5 cm
SD = 0.01 cm
1. Capability Index:
Cpk = min ( [tex]\frac{USL - Mean }{3SD}[/tex] , [tex]\frac{Mean - LSL}{3SD}[/tex] )
So, now, we need to find the following:
[tex]\frac{USL - Mean }{3SD}[/tex] = [tex]\frac{5.04 - 5 }{3 * 0.01}[/tex]
[tex]\frac{USL - Mean }{3SD}[/tex] = [tex]\frac{0.04}{0.03}[/tex]
[tex]\frac{USL - Mean }{3SD}[/tex] = 1.33
Similarly,
[tex]\frac{Mean - LSL }{3SD}[/tex] = [tex]\frac{5 - 4.96 }{3 * 0.01}[/tex]
[tex]\frac{Mean - LSL }{3SD}[/tex] = [tex]\frac{0.04}{0.03}[/tex]
[tex]\frac{Mean - LSL }{3SD}[/tex] = 1.33
So,
Cpk = min ( [tex]\frac{USL - Mean }{3SD}[/tex] , [tex]\frac{Mean - LSL}{3SD}[/tex] ) = 1.33
2. Maximum Standard deviation allowed.
Let SD be maximum standard deviation allowed.
So,
Mean - 3SD = 4.96 Equation 1
Mean + 3SD = 5.04 Equation 2
Subtracting Equation 2 from 1, we have
6SD = 5.04 - 4.96
6SD = 0.08
SD = 0.0133