Respuesta :

Given:

The midpoint of overline AB is M(0, - 7) .

The coordinates of A are (- 2, - 6).

To find:

The coordinates of point B.

Solution:

Let the coordinates of point B are (a,b).

Midpoint formula:

[tex]Midpoint=\left(\dfrac{x_1+x_2}{2},\dfrac{y_1+y_2}{2}\right)[/tex]

The midpoint of overline AB is M(0, - 7). Using the midpoint formula, we get

[tex]M=\left(\dfrac{-2+a}{2},\dfrac{-6+b}{2}\right)[/tex]

[tex](0,-7)=\left(\dfrac{-2+a}{2},\dfrac{-6+b}{2}\right)[/tex]

On comparing both sides, we get

[tex]\dfrac{-2+a}{2}=0[/tex]

[tex]-2+a=0[/tex]

[tex]a=2[/tex]

And,

[tex]\dfrac{-6+b}{2}=-7[/tex]

[tex]-6+b=-14[/tex]

[tex]b=-14+6[/tex]

[tex]b=-8[/tex]

Therefore, the coordinates of point B are (2,-8).