In two shipments of fruit, A and B, the proportions of fruit that are apples are and , respectively. Suppose that independent random samples of 50 fruit from A and 100 fruit from B. Let be the sample proportion of apples from shipment A and be the sample proportion of apples from shipment B. What is the mean of the sampling distribution of -

Respuesta :

This question is incomplete, the complete question is;

In two shipments of fruit, A and B, the proportions of fruit that are apples are [tex]P^"_{A}[/tex] and [tex]P^"_{B}[/tex] , respectively. Suppose that independent random samples of 50 fruit from A and 100 fruit from B. Let [tex]P^"_{A}[/tex]  be the sample proportion of apples from shipment A and [tex]P^"_{B}[/tex] be the sample proportion of apples from shipment B. What is the mean of the sampling distribution of [tex]P^"_{A}[/tex] - [tex]P^"_{B}[/tex]  ?

Answer:

the mean of the sampling distribution is [tex]P^"_{A}[/tex] - [tex]P^"_{B}[/tex]  

Step-by-step explanation:

Given the data in the question;

let [tex]X_{A}[/tex] be number of apples from the shipment A

and [tex]X_{B}[/tex] be number of apples from shipment B

[tex]P^"_{A}[/tex]  =  [tex]X_{A}[/tex] /  [tex]n_{A}[/tex]  =  [tex]X_{A}[/tex] / 50                             {  x ¬ Bin(np )

{ [tex]X_{A}[/tex] = 50[tex]P^"_{A}[/tex]  )

[tex]P^"_{B}[/tex]  =  [tex]X_{B}[/tex] /  [tex]n_{B}[/tex]  =  [tex]X_{B}[/tex] / 100

( [tex]X_{B}[/tex] = 100[tex]P^"_{B}[/tex] )

E( [tex]P^"_{A}[/tex] - [tex]P^"_{B}[/tex]  ) = E( [tex]X_{A}[/tex] /  [tex]n_{A}[/tex]  - [tex]X_{B}[/tex] /  [tex]n_{B}[/tex] )

= E( [tex]X_{A}[/tex] / 50  -  [tex]X_{B}[/tex] / 100 )

= E([tex]X_{A}[/tex]) / 50  -  E([tex]X_{B}[/tex]) / 100

= 50[tex]P^"_{A}[/tex] / 50  -  100[tex]P^"_{B}[/tex]  / 100

=  [tex]P^"_{A}[/tex] - [tex]P^"_{B}[/tex]             { E(X) = np ]

Therefore, the mean of the sampling distribution is [tex]P^"_{A}[/tex] - [tex]P^"_{B}[/tex]