Respuesta :

Answer:

Possible dimensions are [tex]r=4\,\,cm\,,\,h=4\,\,cm[/tex] and [tex]h=16\,\,cm\,,\,r=2\,\,cm[/tex]

Step-by-step explanation:

Given:

Volume of a cylinder is [tex]64\pi\,\,cm^3[/tex]

To find: Dimensions of a cylinder

Solution:

Let [tex]r,h[/tex] denote height of a cylinder.

Volume of a cylinder = [tex]\pi r^2h[/tex]

Therefore,

[tex]64\pi=\pi r^2h\\64=r^2h\\4^2\,4=r^2h[/tex]

One possible dimension can be [tex]r=4\,\,cm\,,\,h=4\,\,cm[/tex].

Also, [tex]64=r^2h[/tex] can be written as [tex]16(2^2)=hr^2[/tex]

So, another possible dimension can be [tex]h=16\,\,cm\,,\,r=2\,\,cm[/tex]