Answer:
[tex]y=2\frac{1}{6}[/tex] or [tex]\frac{13}{6}[/tex]
Step-by-step explanation:
We know that [tex]x[/tex] and [tex]y[/tex] are directly proportional. Therefore, using the given information, we can set up the following proportion:
[tex]\frac{6.5}{12}=\frac{y}{4}[/tex]
Solving for [tex]y[/tex], we get:
[tex]\frac{6.5}{12}=\frac{y}{4}[/tex]
[tex]12*y=6.5*4[/tex] (Cross-Products Property)
[tex]12y=26[/tex] (Simplify)
[tex]\frac{12y}{12} =\frac{26}{12}[/tex] (Divide both sides of the equation by [tex]12[/tex] to get rid of [tex]y[/tex]'s coefficient)
[tex]y=2\frac{1}{6}[/tex] or [tex]\frac{13}{6}[/tex] (Simplify)
Hope this helps!